找回密码
 立即注册
搜索
yeec近年来原创帖合集 本站基础知识下载汇总 yeec网站学习币充值链接 学习中心正式上线

[分享] LVDS驱动相关

[复制链接]
郑振寰 发表于 2006-9-3 17:40 | 显示全部楼层 |阅读模式

注册登录才能更好的浏览或提问。

您需要 登录 才可以下载或查看,没有账号?立即注册

×
常规LVDS接口液晶屏定义
2006-7-12

20PIN单6定义:
1:电源2:电源3:地 4:地 5:R0- 6:R0+ 7:地 8:R1- 9:R1+ 10:地 11:R2- 12:R2+ 13:地 14:CLK- 15:CLK+ 16空 17空 18空 19 空 20空
每组信号线之间电阻为(数字表120欧左右)

20PIN双6定义:
1:电源2:电源3:地 4:地 5:R0- 6:R0+ 7:R1- 8:R1+ 9:R2- 10:R2+ 11:CLK- 12:CLK+ 13:RO1- 14:RO1+ 15:RO2- 16:RO2+ 17:RO3- 18:RO3+
19:CLK1- 20:CLK1+
每组信号线之间电阻为(数字表120欧左右)

20PIN单8定义:
1:电源2:电源3:地 4:地 5:R0- 6:R0+ 7:地 8:R1- 9:R1+ 10:地 11:R2- 12:R2+ 13:地 14:CLK- 15:CLK+ 16:R3- 17:R3+
每组信号线之间电阻为(数字表120欧左右)

30PIN单6定义:
1:空2:电源3:电源 4:空 5:空 6:空 7:空 8:R0- 9:R0+ 10:地 11:R1- 12:R1+ 13:地 14:R2- 15:R2+ 16:地 17:CLK- 18:CLK+ 19:地 20:空- 21:空 22:空 23:空 24:空 25:空 26:空 27:空 28空 29空 30空
每组信号线之间电阻为(数字表120欧左右)

30PIN单8定义:
1:空2:电源3:电源 4:空 5:空 6:空 7:空 8:R0- 9:R0+ 10:地 11:R1- 12:R1+ 13:地 14:R2- 15:R2+ 16:地 17:CLK- 18:CLK+ 19:地 20:R3- 21:R3+ 22:地 23:空 24:空 25:空 26:空 27:空 28空 29空 30空
每组信号线之间电阻为(数字表120欧左右)

30PIN双6定义:1:电源2:电源3:地 4:地 5:R0- 6:R0+ 7:地 8:R1- 9:R1+ 10:地 11:R2- 12:R2+ 13:地 14:CLK- 15:CLK+ 16:地 17:RS0- 18:RS0+ 19:地 20:RS1- 21:RS1+ 22:地 23:RS2- 24:RS2+ 25:地 26:CLK2- 27:CLK2+
每组信号线之间电阻为(数字表120欧左右)

30PIN双8定义:
1:电源2:电源3:电源 4:空 5:空 6:空 7:地 8:R0- 9:R0+ 10:R1- 11:R1+ 12:R2- 13:R2+ 14:地 15:CLK- 16:CLK+ 17:地 18:R3- 19:R3+ 20:RB0-21:RB0+ 22:RB1- 23:RB1+ 24:地 25:RB2- 26:RB2+ 27:CLK2- 28:CLK2+ 29:RB3- 30:RB3+
每组信号线之间电阻为(数字表120欧左右)
一般12PIN、14PIN、20PIN、30PIN为LVDS接口。
看贴要回是本分,有问必答是人才,解决问题回贴是公德.
医疗设备维修.维修咨询(请尽可能在论坛提问),协助维修,上门服务.
电话:13991827712

yeec维修网视频培训资料购买链接
BeckmanCoulter DXA系列培训资料
Ortho VITROS 系列培训资料
Ortho enGen_ThermoFisher TCA 实验室自动化系统培训资料
Roche Cobas 实验室自动化系统培训资料
Roche Cobas modular系列分析仪培训资料
Horiba-ABX Yumizen系列培训资料
DiaSorin Liaison系列培训资料
Advia2120培训资料
Inpeco-Aptio系列培训资料
Atellica Solution系列培训资料
Siemens Immunoassay系列培训资料 西门子化学发光系列
SIEMENS Advia系列培训资料 西门子生化系列
Toshiba/Abbott系列培训资料 东芝雅培生化系列
Abbott Architect 系列培训资料 雅培生化化学发光系列
ACL TOP 系列培训资料 沃芬TOP血凝系列
BeckmanCoulter Immunoassay系列培训资料 贝克曼化学发光系列
BeckmanCoulter DXH 系列培训资料 贝克曼DXH血球系列
BeckmanCoulter自动样品处理系统介绍性培训资料 贝克曼前后处理流水线系列
BeckmanCoulter AU系列培训资料 贝克曼AU生化系列
BeckmanCoulter DXC系列培训资料 贝克曼DXC生化系列
LaboSpect003/008/AS 7100/7180分析仪培训资料
Horiba-ABX系列培训资料 Horiba-ABX血球系列
Sysmex 血凝系列培训(CA/CS)
Sysmex 尿液分析系列培训(UF1000/5000/UC3500)
Sysmex 血球系列培训(KX21/POCH/XS/XT/XE)
Sysmex XN系列培训(XN-L/XN1000/XN2000/XN3000/XN9000)
Sysmex HISCL系列培训
可直接淘宝店铺购买https://yeec.taobao.com,或咨询手机/微信:13991827712,QQ:67708237
 

 楼主| 郑振寰 发表于 2006-9-3 19:13 | 显示全部楼层

THC63LVDM63 lcd信号转换成lvds信号的芯片资料


本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有账号?立即注册

×
 楼主| 郑振寰 发表于 2006-9-3 19:14 | 显示全部楼层

几种视频芯片在机载计算机系统中的应用

中国航空计算技术研究所一室 崔红利 姜运生西安电子科技大学多媒体研究所 司栋森

摘 要: 本文重点介绍了几种新型视频转换芯片在机载计算机系统上的应用,主要包括PAL制视频和LVDS视频总 线设计,揭示了机载视频发展的趋势和新技术,在机载视频系统设计中具有典型性和实用性。
关键词: 视频;低电压差分信号;同步时钟


目前,嵌入式机载计算机正逐渐从后台走出来,其中视频系统的发展最引人注目,从最初简单的指示灯,到能显示飞行数据的数码管,直到能显示汉字的LCD视频,显示的质量和信息量不断提高。随着导航和瞄准系统的发展,对视频系统提出了更高的要求,需要能实时、动态、三维地显示地形地貌。本文介绍了几种新型视频转换芯片在机载计算机系统上的应用。
具有视频功能的CPU 模块的选择
支持像地面系统这么丰富多采的视频显示不但要求极高的主频和处理能力,还需要支持图形操作系统,至少具备能够驱动VGA以上分辨率的软硬件,能够为应用程序提供丰富的图形图像功能。这些都对CPU模块提出了更高的要求,通常纯粹的单片嵌入式CPU完全不能承担,必须另行选择。
目前硬件上和PC机视频系统兼容、能运行图形操作系统的CPU模块有许多种,其中经过加固能够满足机载嵌入式要求的主要有两个系列,德国JUMPTec公司的ETX-P3系列和瑞士符合PC-104标准的Smart-P3系列。它们体积小、功能强,都具有以下特点:
处理器都采用P3以上的CPU,处理速度高;
单5V电源支持,简化整个嵌入式系统设计;
BIOS和PC机完全兼容,软件可以直接在PC机上开发而无需任何修改;
和PC机外部接口基本相同,例如,提供两个串口、一个并口、2个USB口,支持PS/2鼠标等,在系统扩充功能上,峁㏄CI总线和传统的EISA总线接口;
视频接口提供VGA、LCD形式接口支持。
这些特点非常适合对图形显示要求较高的机载嵌入式要求,可以大大简化系统设计难度。
视频接口电路设计
PAL制视频转换电路
我国许多飞机使用过类似彩色电视的PAL制显示器,在显示图形分辨率要求不是很苛刻的情况下,这些设备完全可以作为机载计算机的显示终端。但一般计算机的显示接口并不直接支持PAL制,需要在VGA接口和PAL制之间进行适当的转换。美国模拟器件公司的AD725就具有此项功能,具体的转换电路。AD725支持PAL制和NTSC制式,PAL即逐行倒相正交平衡调幅制,是我国电视采用的标准;NTSC是全国电视系统委员会制式,是美国采用的标准。VGA接口主要包括2个同步信号和3个色彩信号,即水平同步(行同步)信号HSync,垂直同步(帧同步)信号VSync,以及R(红)、G(绿)、B(蓝)三色强度信号。其中,HSync和VSync是TTL逻辑电平,RGB是模拟信号。RGB输出经过交流耦合连接到AD725相应的输入,在靠近AD725附近要对模拟信号端接75 的电阻,其电压最大峰-峰值为714mV。为增强抑制噪音,需要较大的输入阻容,每个输入端都接有0.1 F的串联电容。HSync和VSync逻辑电平输入在AD725内部共同产生综合同步。如果直接使用综合同步信号,则综合同步信号接HSync输入端,而VSync端要接高电平H(+2V)。
PAL/NTSC模式转换由管脚STND决定,当输入STND = H时,芯片工作在NTSC模式;当STND = L时,芯片工作在PAL模式。图中工作模式由H1、H2调线设置,两者应同时为H或L。当工作在PAL制时,G1的晶振频率应选17.734475MHz;工作在NTSC模式时,G1应为14.318180MHz。图1中的视频输出提供两种方法:一种是所有的TV都有R/F输入,对应信号为管脚10的综合视频(COMP)输出;另一种采用亮度和色度组成图像控制,图中管脚11(LIMA)是亮度输出,管脚9(CRMA)是色度输出。
LCD显示
无论对电路如何改进,如色度陷波,消除抖动等,PAL制视频的图像质量都比原来的图像差。图像的闪烁、抖动不能完全消除,无法满足航空地图显示的高分辨率要求。在机载计算机中,采用LCD显示屏是解决高分辨率和小体积矛盾的有效途径,上述提到两种CPU模块都能直接支持标准接口的LCD。经过加固改造PLANAR公司的LC640,480彩色LCD屏能满足机载的要求。其接口是标准的40芯LCD输入插座,管脚具体定义可参考有关资料。表1是LCD接口主要信号,其中信号方向相对于LCD模块。
直接驱动LCD的电路比较简单,只要把CPU模块对应信号连接即可,在此不再给出。
LVDS视频发送转换
在机载环境下,直接的LCD驱动显示都是主机和显示屏一体化结构,体积较大。飞机仪表舱空间有限,一般都采用分体式,即把显示器和控制面板安装在仪表舱,主机安装在中后舱。这样,主机和显示器及控制器之间可以使用长距离电缆连接,但必须解决显示和控制信号长距离驱动问题。异军突起的LVDS技术是解决这一问题的法宝。LVDS(Low Voltage Difference Signal),即低电压差分信号,其低压只有35mV,低压保证了极低的功耗,差分保证了长距离传输信号品质。但是LVDS视频不是简单的将LCD信号一一转换为对应的差分信号,而是采用特别简洁的差分信号对。包括时钟信号对(TxCLK+,TxClk-)和(Tx0-Tx2)三对信号,后三对差分信号是RGB颜色强度以及同步信号综合调制后的差分输出。在接收方,对LVDS差分信号合成后再还原成原来的时钟、颜色强度及同步信号等。THine公司的THC63LVDM63系列能将LCD信号转换为视频LVDS信号,使用该芯片对LCD信号直接转换的电路。图中D1的管脚27是省电模式(Power Down)控制,用上拉电阻把它固定在高电平,使之一直处于激活状态。可以采用一个控制逻辑,当系统进入休眠状态时,输入为低电平,芯片本身不工作,屏幕也不再显示图像。
ETX-P3内部已经集成了LVDS发送电路,TTL电平的LCD信号和LVDS差分信号管脚共享。它同时具有两路LVDS输出。要使能LVDS,必须配置一个EEPROM, 并进行一定的驱动软件配置。H1短路跨接时,AT24C16处于可写状态,在纯DOSX下运行以下命令:
C>Jili11 JiliR120.dat
这时,在程序的提示下将LVDS视频配置数据写入E2PROM(AT24C16),后边的数据文件参数代表所设置的视频分辨率。当配置完毕后应该将H1断开,使AT24C16处于写保护状态,保证机载环境驱动数据的安全。
LVDS 视频接收转换
当LVDS视频通过长距离传输到显示器时,必须进行逆变化,即把差分的LVDS视频信号还原为直接的TTL电平的LCD显示控制信号。SN公司的SN65LVDS86就是完成这一功能的专用芯片。接收方转换电路,其中D1的管脚22也是省电模式控制端。在此采用和发送端相似的方法,在每一个接收端跨接120 的回路电阻,稳定接收信号品质。在工程实践上,接收端要和发送端共地,防止图像扭曲和浮动。
结束语
机载视频系统在不断地发展。根据以上原理,我们研制了机载综合显示系统,通用性强、接口简单,已经通过试飞。试飞的一个图像。试飞证明,图像清晰、画面稳定,说明设计合理,且稳定可靠。LVDS视频是机载视频的发展的一个重要趋势,必将应用在更广泛的领域。

看贴要回是本分,有问必答是人才,解决问题回贴是公德.
医疗设备维修.维修咨询(请尽可能在论坛提问),协助维修,上门服务.
电话:13991827712
 楼主| 郑振寰 发表于 2006-9-3 19:19 | 显示全部楼层
LVDS技术原理和设计简介
作者:南京中兴… :
摘 要: 介绍了LVDS(低电压差分信号)技术的原理和应用,并讨论了在单板和系统设计中应用LVDS时的布线技巧。

关键词: LVDS PCB设计

1 LVDS介绍

LVDS(Low Voltage Differential Signaling)是一种低摆幅的差分信号技术,它使得信号能在差分PCB线对或平衡电缆上以几百Mbps的速率传输,其低压幅和低电流驱动输出实现了低噪声和低功耗。

几十年来,5V供电的使用简化了不同技术和厂商逻辑电路之间的接口。然而,随着集成电路的发展和对更高数据速率的要求,低压供电成为急需。降低供电电压不仅减少了高密度集成电路的功率消耗,而且减少了芯片内部的散热,有助于提高集成度。

减少供电电压和逻辑电压摆幅的一个极好例子是低压差分信号(LVDS)。LVDS物理接口使用1.2V偏置提供400mV摆幅的信号(使用差分信号的原因是噪声以共模的方式在一对差分线上耦合出现,并在接收器中相减从而可消除噪声)。LVDS驱动和接收器不依赖于特定的供电电压,因此它很容易迁移到低压供电的系统中去,而性能不变。作为比较,ECL和PECL技术依赖于供电电压,ECL要求负的供电电压,PECL参考正的供电电压总线上电压值(Vcc)而定。而GLVDS是一种发展中的标准尚未确定的新技术,使用500mV的供电电压可提供250mV 的信号摆幅。不同低压逻辑信号的差分电压摆幅示于图1。

LVDS在两个标准中定义。IEEE P1596.3(1996年3月通过),主要面向SCI(Scalable Coherent Interface),定义了LVDS的电特性,还定义了SCI协议中包交换时的编码;ANSI/EIA/EIA-644(1995年11月通过),主要定义了LVDS的电特性,并建议了655Mbps的最大速率和1.823Gbps的无失真媒质上的理论极限速率。在两个标准中都指定了与物理媒质无关的特性,这意味着只要媒质在指定的噪声边缘和歪斜容忍范围内发送信号到接收器,接口都能正常工作。 LVDS具有许多优点:①终端适配容易;②功耗低;③具有fail-safe特性确保可靠性;④低成本;⑤高速传送。这些特性使得LVDS在计算机、通信设备、消费电子等方面得到了广泛应用。

图2给出了典型的LVDS接口,这是一种单工方式,必要时也可使用半双工、多点配置方式,但一般在噪声较小、距离较短的情况下才适用。每个点到点连接的差分对由一个驱动器、互连器和接收器组成。驱动器和接收器主要完成TTL信号和LVDS信号之间的转换。互连器包含电缆、PCB上差分导线对以及匹配电阻。LVDS驱动器由一个驱动差分线对的电流源组成?通常电流为3.5mA),LVDS接收器具有很高的输入阻抗,因此驱动器输出的电流大部分都流过100Ω?的匹配电阻,并在接收器的输入端产生大约350mA 的电压。当驱动器翻转时,它改变流经电阻的电流方向,因此产生有效的逻辑″1″和逻辑″0″状态。低摆幅驱动信号实现了高速操作并减小了功率消耗,差分信号提供了适当噪声边缘和功率消耗大幅减少的低压摆幅。功率的大幅降低允许在单个集成电路上集成多个接口驱动器和接收器。这提高了PCB板的效能,减少了成本。

不管使用的LVDS传输媒质是PCB线对还是电缆,都必须采取措施防止信号在媒质终端发生反射,同时减少电磁干扰。LVDS要求使用一个与媒质相匹配的终端电阻(100±20Ω),该电阻终止了环流信号,应该将它尽可能靠近接收器输入端放置。LVDS驱动器能以超过155.5Mbps的速度驱动双绞线对,距离超过10m。对速度的实际限制是:①送到驱动器的TTL数据的速度;②媒质的带宽性能。通常在驱动器侧使用复用器、在接收器侧使用解复用器来实现多个TTL信道和一个LVDS信道的复用转换,以提高信号速率,降低功耗。并减少传输媒质和接口数,降低设备复杂性。

LVDS接收器可以承受至少±1V的驱动器与接收器之间的地的电压变化。由于LVDS驱动器典型的偏置电压为+1.2V,地的电压变化、驱动器偏置电压以及轻度耦合到的噪声之和,在接收器的输入端相对于接收器的地是共模电压。这个共模范围是:+0.2V~+2.2V。建议接收器的输入电压范围为:0V~+2.4V。

2 LVDS系统的设计

LVDS系统的设计要求设计者应具备超高速单板设计的经验并了解差分信号的理论。设计高速差分板并不很困难,下面将简要介绍一下各注意点。

2.1 PCB板

? (A)至少使用4层PCB板(从顶层到底层):LVDS信号层、地层、电源层、TTL信号层;

(B)使TTL信号和LVDS信号相互隔离,否则TTL可能会耦合到LVDS线上,最好将TTL和LVDS信号放在由电源/地层隔离的不同层上;

(C)使LVDS驱动器和接收器尽可能地靠近连接器的LVDS端;

(D)使用分布式的多个电容来旁路LVDS设备,表面贴电容靠近电源/地层管脚放置;

(E)电源层和地层应使用粗线,不要使用50Ω布线规则;

(F)保持PCB地线层返回路径宽而短;

(G)应该使用利用地层返回铜线(gu9ound return wire)的电缆连接两个系统的地层;

(H) 使用多过孔(至少两个)连接到电源层(线)和地层(线),表面贴电容可以直接焊接到过孔焊盘以减少线头。

2.2 板上导线

(A) 微波传输线(microstrip)和带状线(stripline)都有较好性能;

(B) 微波传输线的优点:一般有更高的差分阻抗、不需要额外的过孔;

(C) 带状线在信号间提供了更好的屏蔽。

2.3 差分线

(A)使用与传输媒质的差分阻抗和终端电阻相匹配的受控阻抗线,并且使差分线对离开集成芯片后立刻尽可能地相互靠近(距离小于10mm),这样能减少反射并能确保耦合到的噪声为共模噪声;

(B)使差分线对的长度相互匹配以减少信号扭曲,防止引起信号间的相位差而导致电磁辐射;

(C)不要仅仅依赖自动布线功能,而应仔细修改以实现差分阻抗匹配并实现差分线的隔离;

(D)尽量减少过孔和其它会引起线路不连续性的因素;

(E)避免将导致阻值不连续性的90°走线,使用圆弧或45°折线来代替;

(F)在差分线对内,两条线之间的距离应尽可能短,以保持接收器的共模抑制能力。在印制板上,两条差分线之间的距离应尽可能保持一致,以避免差分阻抗的不连续性。

2.4 终端

(A)使用终端电阻实现对差分传输线的最大匹配,阻值一般在90~130Ω之间,系统也需要此终端电阻来产生正常工作的差分电压;

(B)最好使用精度1~2%的表面贴电阻跨接在差分线上,必要时也可使用两个阻值各为50Ω的电阻,并在中间通过一个电容接地,以滤去共模噪声。

2.5 未使用的管脚

所有未使用的LVDS接收器输入管脚悬空,所有未使用的LVDS和TTL输出管脚悬空,将未使用的TTL发送/驱动器输入和控制/使能管脚接电源或地。

2.6 媒质(电缆和连接器)选择

(A)使用受控阻抗媒质,差分阻抗约为100Ω,不会引入较大的阻抗不连续性;

(B)仅就减少噪声和提高信号质量而言,平衡电缆(如双绞线对)通常比非平衡电缆好;

(C)电缆长度小于0.5m时,大部分电缆都能有效工作,距离在0.5m~10m之间时,CAT 3(Categiory 3)双绞线对电缆效果好、便宜并且容易买到,距离大于10m并且要求高速率时,建议使用CAT 5双绞线对。

2.7 在噪声环境中提高可靠性设计

LVDS 接收器在内部提供了可靠性线路,用以保护在接收器输入悬空、接收器输入短路以及接收器输入匹配等情况下输出可靠。但是,当驱动器三态或者接收器上的电缆没有连接到驱动器上时,它并没有提供在噪声环境中的可靠性保证。在此情况下,电缆就变成了浮动的天线,如果电缆感应到的噪声超过LVDS内部可靠性线路的容限时,接收器就会开关或振荡。如果此种情况发生,建议使用平衡或屏蔽电缆。另外,也可以外加电阻来提高噪声容限,如图3所示。 图中R1、R3是可选的外接电阻,用来提高噪声容限,R2≈100Ω。

当然,如果使用内嵌在芯片中的LVDS收发器,由于一般都有控制收发器是否工作的机制,因而这种悬置不会影响系统。

3 应用实例

LVDS技术目前在高速系统中应用的非常广泛,本文给出一个简单的例子来看一下具体的连线方式。加拿大PMC公司的DSLAM(数字用户线接入模块)方案中,利用LVDS技术实现点对点的单板互联,系统结构可扩展性非常好,实现了线卡上的高集成度,并且完全能够满足业务分散、控制集中带来的大量业务数据和控制流通信的要求。 图4描述了该系统线卡与线卡之间、线卡与背板之间的连线情形,使用的都是单工方式,所以需要两对线来实现双向通信。图中示出了三种不同连接方式,从上到下分别为:存在对应连接芯片;跨机架时实现终端匹配;同层机框时实现终端匹配。在接收端串接一个变压器可以减小干扰并避免LVDS驱动器和接收器地电位差较大的影响。

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有账号?立即注册

×
看贴要回是本分,有问必答是人才,解决问题回贴是公德.
医疗设备维修.维修咨询(请尽可能在论坛提问),协助维修,上门服务.
电话:13991827712
 楼主| 郑振寰 发表于 2006-9-3 19:27 | 显示全部楼层
一、所有TFT-LCD的数据接口种类:
单TTL6位(8位)
双TTL6位(8位)
单LVDS6位(8位)
双LVDS6位(8位)
单TMDS6位(8位)
双TMDS6位(8位)
还有最新出来的标准RSDS

6位和8位是用来表示屏能显示颜色多少,6位屏可以显示颜色为 2的6次方X2的6次方X2的6次方分别代表R G B 三基色,算下来6位屏最多可以显示的颜色为262144种颜色,8位屏为16777216种颜色。屏显示颜色的多少只和屏的位数有关。我们本本用的屏一般都是6位的。
早期的本本都是用12寸以下的屏,该种屏分辩率一般为640X480(VGA) 800X600(SVGA),采用的接口为单TTL6位,屏上接针脚为41针和31针,12寸以41针居多(800X600),10寸以31针居多(640X480)。TTL信号是TFT-LCD能识别的标准信号,就算是以后用到的LVDS TMDS 都是在它的基础上编码得来的。TTL信号线一共有22根(最少的,没有算地和电源的)分另为R G B 三基色信号,两个HS VS 行场同步信号,一个数据使能信号DE 一个时钟信号CLK,其中R G G三基色中的每一基色又根据屏的位数不同,而有不同的数据线数(6位,和8位之分)6位屏和8位屏三基色分别有R0--R5(R7) G0--G5(G7) B0--B5(B7)三基色信号是颜色信号,接错会使屏显示的颜色错乱。另外的4根信号(HS VS DE CLK)是控制信号,接错会使屏点不亮,不能正常显示。
由于TTL信号电平有3V左右,对于高速率的长距离传输影响很大,且抗干扰能力也比较差。所以之后又出现了LVDS接口的屏,只要是XGA以上分辩率的屏都是用LVDS方式。LVDS也分单通道,双通道,6位,8位,之分,原理和TTL分法是一样的。
LVDS(低压差分信号)的工作原理是用一颗专门的IC,把输入的TTL信编码成LVDS 信号,6位为4组差分,8位为5组差分,数据线名称为D0- D0+ D1- D1+ D2- D2+ CK- CK+ D3- D3+ 其中如果是6位屏就没有D3- D3+这一组信号,这个编码过程是在我们电脑主板上完成的。在屏的另一边,也有一颗相同功能的解码IC,把LVDS信号变成TTL信号,屏最终用的还是TTL信号,因为LVDS信号电平为1V左右,而且-线和+线之间的干扰还能相互抵消。所以抗干扰能力非常强。很适合用在高分辩率所带来高码率的屏上。
由于高分屏1400X1050(SXGA+) 1600X1200(UXGA) 的分辩率实在太高,信号的码率也相应提高,单靠一路LVDS传输已不堪重负,所以都用的是双路的LVDS接口,以降低每一路LVDS的速率。保证信号的稳定度。
对于笔记本上用的XGA屏,一般都是20针扁平接口,对应的接口定义为
1 VCC
2 VCC
3 GND
4 GND
5 D0-
6 D0+
7 GND
8 D1-
9 D1+
10 GND
11 D2-
12 D2+
13 GND
14 CK-
15 CK+
16 GND
17 空
18 空
19 空
20 空。
高分屏用的是30针扁平接口,对应定义为:
1 GND
2 VCC
3 VCC
4 空
5 空
6 空
7 空
8 DA0-
9 DA0+
10 GND
11 DA1-
12 DA1+
13 GND
14 DA2-
15 DA2+
16 GND
17 CKA-
18 CKA+
19 GND
20 DB0-
21 DB0+
22 GND
23 DB1-
24 DB1+
25 GND
26 DB2-
27 DB2+
28 GND
29 CKB-
30 CKB+


二、对LCD的结构分析:
现在LCD主要由玻璃基板加背光板组成。玻璃基板本身是不发光的,是靠后边的背光源发出的光透射过玻璃基板,我们才能看的到图像的。在玻璃基板最外边,也就是对着我们眼睛的这一面,有一层偏光膜,通常我们说屏划伤,也就是划伤这层膜,可以换,基本上不需要什么工具的,把屏拆开,拿掉外框,用一把小刀轻轻的把这层膜刮下来,偏光膜都是粘的很紧的,只能用小刀一点点刮。千万要细心,如果不小心把玻璃基板给划伤了,呵呵!!!那可就是永久的伤痕哦,旧的偏光膜拿下来后,首先要清理玻璃基板,可用好一点的纸巾加一点无水酒精。一定要把它搽的明亮亮的,不要有一点灰尘落在上面,不然装好后那个灰尘就是一个脏点,看起来很不爽的。然后把新的偏光膜上的一层保护膜去掉,去掉之后的偏光膜就像是一块不干胶一样的,把粘的一面对着玻璃基板,对整齐粘好就OK了,粘的时候要一定要慢慢的来,千万不要留下气泡,如果有气泡就重复刚才的过程,直到完好为止。要注意的是不是所有的偏光膜都能通用的,偏光膜也有角度之分的,有135度,90度。45度几种,如果角度和LCD不对应,显示出来的颜色会反色,就像应该红的地方变蓝了。黑的地方变白一样。有一个方法可以先知道偏光膜的角度,就是把旧膜弄下来后,用新的膜在屏上比一下,看有没有正常的图像出来(前提是要把屏点亮中)。有就是对的。现在一张14 15寸的偏光膜卖14块左右,但JS换要收100元,你们就知道JS有多黑了吧。呵呵!!!
当LCD用一段时间之后亮度会有一定程度的降低,对于轻微的亮度变暗,可以更换灯管来解决,更换后可恢复到和新屏一样。但有些LCD老化的实在严重,比如严重发黄,边角有黄边的,这些屏一般都是灯管老化加背光板老化。只是更换灯管可以改善亮度问题,但换过之后还是会发黄,只有边背光板一起更换才有好的效果,更换灯管时,要拆开屏到最底层,也就是要拿掉背光源里面的几层反光膜,和朔料板。因为灯管一般是装在LCD下面的外框上的,注意事项还是那几点,防尘,拿背光源里那几张反光膜的时候最好是拿它们的边边。千万不要用手直接去捏它们的中间,不然会留下指纹,装好后会留下像指纹一样的白斑,晚上看起来可恐怖了。呵呵,如果你已经印上指纹了,可用纸巾加清水搽去,搽到你看不到指纹为止。对于有的屏会出线,是因为绑定在玻璃基板上和电路板相边的软排线中有一根断了,或者是接确不好所致。屏出线了一般是不建议修的。因为要重新绑定软排线是要有专门的压线设备的,但国内有些修屏的设备终究是比不上原厂的好,往往是刚修的那几天是好的,但过一段时间后,压线的地方就会脱落,因修屏的时候换软排线是一组一组的换(一般一组有200根线),用一段时间后就可能会一组一组的掉,这时出的线会更多。如果你是要修好卖给JS还可以考虑。而且能修有线屏的公司收费奇贵,深圳这边的价是150元一根线.修好后的售后服务是:出门不保。呵呵!!!!
总之如果是要拆屏的话,最好找一间干净房间,换膜,换灯管,LCD里面都不能落有可见的灰尘。另个加一点,笔记本用的LCD响应速度大概为 30MS左右,看DVD,和TV的时候,感觉拖尾不是很严重。可以接受的。

三、VGA接口的LCD的显示器显示原理:
模拟PC信号(R G B HS VS )输入到一颗专门的LCD驱动IC,在IC内部先进行ADC转换,把模拟信号变成数字信号,然后在经过SHRINK缩放处理。因为屏的分辩率是一定的,比如1024X768的屏,那屏上就有1024X768XRGB个像素点,如果我们要显示为640X480的模式,就要经过特殊的算法,把三个像素点合并成两个,或一个。如果缩放处理不好的话,就会出来像我们IBM T2X系列笔记本电脑用在640X480 800X600模式的全屏显示的效果。简直是差到极点。不过现在显示器用的驱动IC在这,方面处理的都还很好,基本上看起来和在1024X768的效果一样,字符边也很平滑。在数据信号出来之前IC内部还要叠加一个OSD控制界面。也就是我们用的显示器的控制图标,经过这一系列的信号处理之后,IC就输出屏能识别的TTL信号。对于TTL接口屏就可以直接用的了。LVDS接口的还要加一颗到两颗(对应单通道和双道通)LVDS编码IC,变成LVDS信号。现在有很多驱动IC内部都已经集成了LVDSIC 所以那些驱动IC输出来的就是LVDS信号,可以直接驱动LVDS接口的屏.现在驱动IC市场占有率比较大的是美国GENESIS公司,还有我国台湾的晨星公司。
对于TMDS的接口,原理和LVDS是一样的,上面说过了。TMDS编码方式比LVDS更先进,传输距离和抗干扰能力都要好的多,但基本上不用在本本上的,以台式机的TV PANEL 为多。所以我们不多讨论。
一般来说LCD驱动板的硬件部分是不变的,带我上面提到的所有接口形式(不包括TMDS)只会根据不用的LCD来改MCU里面的屏参来达到适应屏的目的。因为不厂家,不用型号,不用尺寸屏的控制时序不是完全一致的。如果该驱动板和所要驱动的LCD 屏参(时序)不对应。也是点不亮屏的。每一种型号的屏厂家都会有一个DATE SHEET给用户,里面就有屏的详细说明,包括时序图。不过以我的经验,只要接口一样,屏的分辩率一样,不管它实际尺寸(12。14)是否相同,大部分是可以通用的。
上面说的只是LCD改PC,如果要增加AV -SVIDEO 接口,驱动板上也就要多一颗视频解码IC(VIDEO DECODE)。把输入的VIDEO。CVBS信号或,S-SIDEO。信号转换成 LCD驱动IC能识别的YUV656格式的数字信号。而且在选择驱动IC时也要选有带YUV格式输入的IC,成本也会相应高一些。如果要加TV功能,就必须在以上基础上加一个全数字的高频头。把天线上的信号转换成视频解码IC所需要的CVBS信号,来实现收电视的功能。另外电视还要增加音频的功能,这些都比较好办,加一个音频功放就行了。接上喇叭就可以听电视里的声音了。
我上面说改AV PC只是硬件上的改动,但如果增加这些功能,对于驱动板的软件工作量非常大。通常都是厂家调试好了给客户的,客户自已改是不可能的,就算你自已会改,别人软件的源代码也不会给你。
屏的工作电压,这一点非常重要,接高了会把LCD烧掉, 笔记本屏一般用电电压为3。3V,最好不要高过这个电压,不过屏都有一定的耐压值,如果上到5V在短时间内不会烧毁。
所以说要点亮一块LCD,要注意以下几点:
1、接口
2、软件时序
3、工作电压
看贴要回是本分,有问必答是人才,解决问题回贴是公德.
医疗设备维修.维修咨询(请尽可能在论坛提问),协助维修,上门服务.
电话:13991827712
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

QQ|申请友链|手机版|小黑屋|加入QQ群|注销账号|yeec维修网

GMT+8, 2024-11-22 02:14 , Processed in 0.678644 second(s), 35 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表