2. 重复性问题:重复性是判断实验结果优劣的重要指标,其主要判断指标为标准差(SD)和变异系数(CV)。对于特定的分析系统,重复性的高低决定了PCR反应能检测出样本中目的基因的初始浓度变化的最小值。由于PCR反应本身具有不精确扩增的特性,它所造成的结果精确性要远小于经典的临床化学检验和免疫分析。对于绝大多数实验,一般都可以计算出所设计体系能检测出样本初始浓度的最小值,根据多次实验可以求得该最小值的变异情况和它的可信区间范围,变异越小或是可信区间范围越小,说明这一反应体系的精确度越高。在实时定量PCR过程中,从样本的准备到扩增,再到定量的进行,实验中的每个方面都与实验的重复性息息相关,除了加样的准确性和实验所选用的仪器固定参数的限制之外,影响结果重复性较为关键的因素还包括(1)PCR 反应扩增的效率,如果在反应体系中扩增效率不一致,就会影响到目的基因在单位时间内的产量发生差异,从而影响到结果的稳定,要解决这个问题,必须尽量优化实验条件,使反应体系达到最佳扩增效率。(2)目的基因的初始浓度,初始拷贝数越低,结果的重复性越差,为了保证获得精确的结果,应使用初始浓度具有较高数量级的样本,如果待测样本中目的基因的量处于反应体系的检出限附近,那么最好是使用复孔以保证结果的可靠性。(3)标准曲线的影响,对于必须进行绝对定量的研究,标准曲线是必不可少的,虽然标准品和样本之间的差异始终存在,但是制作一个好的标准曲线对定量结果至关重要,在制作标准曲线时,应至少选择5个稀释度的标准品,涵盖待测样本中目的基因量可能出现的全部浓度范围,理想的标准品应与样本具有高同源性,最好是选择纯化的质粒DNA 或是体外合成、转录的RNA(用于RT-PCR),在制备过程中,应使用规范的步骤或是根据所购买的试剂盒提供的标准操作手册进行。 3. 敏感度问题:实时定量PCR 由于使用了荧光物质作为定量的工具,使得其敏感性又大大地提高了,有人[47]报导实时定量PCR 的敏感性要高出传统的终点定量PCR 大约250倍。在理论上,只要设计的引物对目的基因有足够的特异性,PCR 应可检测出只含一个拷贝目的基因的样本,也的确有人报导在特定的反应条件下,实时定量PCR 可以检测出单细胞水平的基因组DNA[11],但是在大多数情况下,对基因组DNA而言,它的最低检出限一般在pg到fg级,对于病毒、质粒而言,其检出限一般在102-103拷贝数以上[8]。影响实时定量PCR 敏感性的因素众多,除了对一般PCR反应均存在的影响因素如反应体系、Taq酶的活性之外,实时定量PCR还有其特殊的影响因素,包括: (1)反应体系中形成的引物二聚体的影响:引物二聚体是非特异性退火和延伸的产物,它的形成不仅会影响到扩增的效率,而且由于SYBR Green I可以与所有的双链DNA结合,所以会在反应体系中出现特异性产物与引物二聚体竞争SYBR Green I的现象,从而降低了实时PCR的敏感性。要解决这个问题,有多种方案可供选择,首先可以用水解探针代替SYBR Green I,虽然水解探针并不能消除引物二聚体的形成,但是在定量检测时,它却可以避开引物二聚体的干扰,专一地测定来自于特异产物的荧光信号,有文献报导使用水解探针的敏感性要比SYBR Green I高出10倍。其次,可以使用热启动办法,所谓热启动是指在反应体系达到引物退火温度时才加入某一反应成分,因为引物二聚体的是在各种试剂一经混合便开始形成的,所以用这种方法能有效地减少引物二聚体的形成,另外Lightcycler提供一种Taq酶的抗体,在PCR反应的最初阶段,这种抗体能阻断Taq酶的作用,但是当反应温度达到70度时,它便失活,使Taq酶开始发挥作用,在反应体系中加入这一抗体的目的也就是使要在反应达到较高温度时,才开始PCR扩增,从而避免反应初始阶段引物二聚体的形成。第三,要尽可能地优化引物设计,例如所设计的两条引物不能互补(尤其在3’端),使两条引物的GC含量大致一致,使用纯化的引物进行实验等,这些都是防止引物二聚体形成的根本因素。第四,如果反应体系中出现PCR的抑制因素,应适当将目的基因的浓度稀释后再进行扩增。最后,在实验过程中应当注意避免室温混合各种试剂,并且在一经混合后立即开始进行扩增。 (2)循环数:一般的实时定量PCR反应只须25-30个循环便可获得满意的结果,但是对于那些极微量的待测样本而言,适当增加循环数可以提高反应的检出限,有文献报导当循环数从25增加到34个循环时,实时定量PCR的最低检出限可从106增加到103。但是并非循环数增加得越多,其敏感性就会越高,实际上,当循环数增加到某一值时,敏感性便不再升高,因为循环数并不是影响敏感性的唯一因素,而且在实验过程中,也不可能因为增加敏感性而无限制地增加循环数,这不仅是实践中行不通,而且在理论上也不可行,因为随着循环数的增加,一方面,聚积的产物会抑制Taq酶的活性,另一方面,也会增加形成异源二聚体的可能性,这些都会影响到最终的定量结果。 (3)Mg2+的浓度:根据Roche公司的Lightcycler3.5版本技术说明,Mg2+的浓度将影响到实时定量PCR的敏感性,其推荐使用的浓度为3mM。Mg2+浓度对敏感性的影响主要存在于两方面,首先,Mg2+是影响Taq酶活性的关键因素,如果Mg2+的浓度无法达到使Taq酶发挥最佳活性,无疑将会影响到实时定量的敏感性;其次,Mg2+的浓度过高,会增加引物二聚体的形成,从而导致敏感性降低。所以在反应中选择合适的Mg2+浓度条件,是相当重要的。
实验方案优化: 由于各家公司生产的热循环仪提供的各种实验方案不太一致,所以优化的策略也不尽相同,然而在各种方案中,前文所述的那些影响实时PCR 反应的因素却总是相通的。只要能较好地控制实验条件,优化实验步骤,要想获得满意的实验结果并不一定都是困难的。下面本文将就影响到实验结果的一些基本参数和实验步骤谈一谈关于实时定量PCR的优化。 1. 基本参数的优化: 1.1 MgCl2的浓度 在PCR反应中,MgCl2的浓度对影响酶的活性是至关重要的,不仅如此,合适的MgCl2的浓度还能在反应中得到较低的Cp(crossing point)值,较高的荧光信号强度以及良好的曲线峰值。所以对其的深度选择应慎重。一般来说,对以DNA或cDNA为模板的PCR反应,应选择2-5mM浓度的MgCl2,对以mRNA为模板的RT-PCR而言,则应选择的浓度为4-8mM。 1.2 模板的浓度:如果研究者是进行首次实验,那么应选择一系列稀释浓度的模板来进行实验,以选择出最为合适的模板浓度,如果条件困难,也至少要选择两个稀释度(高和中、低浓度)来进行实验。一般而言,使Cp位于15-30个循环比较合适,若大于30则应使用较高的模板浓度,如果Cp小于15则应选择较低的模板深度。对于Cp值的确定,经验上是SYBR Green I探针的荧光信号比本底高2倍,杂交探针的荧光强度比本底高0.3倍。 2. 使用SYBR Green I测定DNA时的条件优化: 2.1 MgCl2的浓度:大多数引物-模板对其的要求是2-4 mM。 2.2模板的浓度:初次实验要求做一系列的稀释浓度,如条件限制,至少完成两个稀释的度的测定。基因组DNA在50ng-5pg之间选择,质粒DNA在10^6拷贝数左右选择。 2.3 PCR抑制子:通常用于消除抑制子的办法是将样本进行稀释,但是在某些条件下,抑制子的浓度高,而模板量少,稀释法就不再能达到好的效果,反会使反应的敏感度降低,所以,研究者若要进行实时定量PCR研究,最好选用纯化的模板。 2.4 引物的浓度:引物的浓度是一个影响PCR反应的关键因素,其浓度太低,会致使反应不完全,若引物太多,则发生错配以及产生非特异的产物的可能性会大大增加。对于大多数PCR反应,0.5uM是个合适的浓度,若初次选用这个浓度不理想,可在0.3-1.0uM之间进行选择,直至达到满意的结果。 2.6 退火温度:首次实验设置的退火温度应比计算得出的Tm值小5℃,然后在1-2℃内进行选择。一般地,退火温度要根据经验来确定,这个经验值往往会同计算得到的Tm值有较大的差距。 3. 用SYBR Green I进行一步法RT-PCR的条件优化: 3.1 MgCl2的浓度:不同的靶分子选用不同的浓度,通常是在4-8mM之间选择。 3.2模板的浓度:RT-PCR实验既可以选用总RNA,又可以选用mRNA,其浓度应在1pg-1ug之间选择。对于低模板浓度,可以增加适量的MS2或用alternative RNA 作为载体进行测定。 3.3对照设置:每一引物都应设有阴性对照,阳性对照和污染对照。 4. 杂交探针测定DNA 4.1 MgCl2的浓度:在2-4mM的基础上加0.5-1.0mM,但是不要超过2.0mM。 4.2杂交探针的浓度:初次实验每个探针用0.2uM,如果信号强度达不到要求,可以增加至0.4uM。 4.3对照设置:每一引物都要设阴性对照,每一探针都要设阴性对照。每次实验都要设阳性对照。 4.4 其它的条件同SYBR Green I。 5 用杂交探针实时定量RT-PCR: 5.1 MgCl2的浓度:在4-8mM之间进行选择。 5.2杂交探针的浓度:初实验用0.2 uM,如果荧光信号强度不足,可以增加至0.4uM。 5.3模板浓度设置:优化的扩增须进行一系列知释度的实验,在条件有困难的条件下,至少要进行两个稀释度的测定。选用1pg-1ug的总RNA或是mRNA,若是模板的浓度过小(小于10ng/ul),则可加入MS2或alternative RNA作为载体。
5.4 对照设置:每个引物都要设无模板对照,阳性对照以及污染对照。 6.关于杂交探针的评价:在使用杂交探针进行实验时,必须注意防止探针-引物二聚体的形成和其本身在反应过程中的延伸。引物-探针二聚体的形成,主要是因为探针可与引物的3’末端杂交,其形成以后,会致使此二聚体扩增,从而同目的基因竞争反应的原料,致反应的效率下降。探针其本身能同目的基因相结合,且其解链温度高于引物,所以它可能作为引物而引发延伸反应,为了防止发生这种现象,通常是将其3’末端完全磷酸化,使之不能延伸,若此磷酸化不完全或是没有磷酸化,就会产生目的基因的副产品,从而干扰实验结果。鉴于以上这两点,所以应对探针精心设计,并将其末端完全磷酸化。
目前的实时定量PCR技术进展迅速,本文是结合本实验室的工作经验以及文献资料写成的,文中提到的一系列方案、实验材料和仪器设备都有其各自的优缺点,也有各自的使用范围,不能一概而论。所以不论研究者想进行何种研究,都应根据自己的情况首先找到适合自己研究目的的条件,本文仅供有意于运用实时定量PCR进行研究的人员参考。
参考文献: 1. Saiki, R.K., S. Scharf, F. Faloona, K.B. Mullis, G.T. Horn, H.A. Erlich and N. Arnheim. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 1985. 230:1350-1354. 2. Montogomery, R.A, and Dallman, M.J 1997 Cytokine 9,717-726. 3. Wall SJ, Edward DR. Quantitative reverse transcription-polymerase chain reaction (TR-PCR): A comparison of prime-dropping, competitive, and real-time RT-PCRs. Anal Biochem. 2002 Jan 15;300(2):269-73. 4. Schmittgen TD. Real-time quantitative PCR. Methods. 2001 Dec;25(4):383-5. 5. Willard M, Freeman, Stephen J. Walker and Kent E. Vrana. Quantitative RT-PCR: Pitfall and Potential. Bio Techniques 1999 Jan 26(1):112-125. 6. Giulietti A, Overbergh L,Valckx D,Decallonne B, Bouillon R, Mathieu C. An overview of real-time quantitative PCR: application to quantify cytokine gene expression. Methods 2001 Dec;25(4):386-401. 7. Rajeevan MS, Ranamukhaarachchi DG,Vernon SD, Unger ER. Use of real-time quantitative PCR to validate the results of cDNA array and differential display PCR technologies. Methods Dec 25(4):443-51. 8. Livark K.J., and Schmittgen T.D. 2001 Methods 25, 402-408. 9. Kawakami K, Brabender J, Lord R, Groshen S. 2000 J.Natl. Cancer Inst. 92,1805-1811. 10. Met Ulrich L., and Hans K. Real-time PCR analysis of DNA and RNA extracted from formalin –fixed and paraffin-embedded biopsies. 2001 Methods 25,409-418. 11. Leone G., van Schijndel H., van Gemen B., Kramer F.R., and Sxhoen C.D.1998 Nucleic Acids Res. 28,655-661. 12. Wittwer CT, Ririe KM, Andrew RV, David DA, Gundry RA and Balis UJ. 1997 Biotechniques 22 178-183. 13. Killgore GE, Holloway B and Tenover F. 2000 J. Clin. Microbiol.38 2516-2519. 14. Martell M, Gomez J, Esteban JI, Sauleda S, Quer J, Cabot B, Esteban R and Guardia J. 1999 J. Clin. Microbiol. 37,327-332. 15. Oleksiewicz M.B., Donaldson A.I., and Alexandersen S. 2001 J. Virol.Methods 92,23-35. 16. Van Trappen P.O., Gyselman V.G., Lowe D.G. and Rany A. 2001 Lacent 357,15-21. 17. Overbergh L., Valckx D, Waer M, and Mathieu C. 1999 Cytokine 11, 305-312. 18. Tyagi S, and Kramer F.R.. 1996 Nat .Biotechnol. 14,303-308. 19. Stryer L. 1978 Annu. Rev. Biochem. 47,819-846. 20. Gardullo R.A., Agrawal S., Flores C., Zamecnick P.C., and Wolf D.E., 1998 Proc. Natl. Acad. Sci. USA 85 8790-8794. 21. Bonnet G, Tyagi S, Libchaber A, and Kramer F.R .1999 Proc. Natl. Acad. Sci. USA 96,6171-6176. 22. Kaboev O.K., Luckkina L.A., Tretiakov A.N., and Bahrmand A.R. 2000 Nucl Acids Res. 28 e94. 23. Smit M.L, Giesenford B.A.J., Vet J.A.M., Trijbels F.J.M., and Blom H.J. 2001 Clin. Chem.47,739-744. 24. Durand R., Eslahpazire J., Jafari S., Delabre J.F., Mamorat-Khuong A., di Piazza J.P., and Le Bras J.2000 Antimicrob.Agents Chemother.44 3461-3464. 25. Fortin N.Y., Mulchandani A.,and Chen W.2001 Anal.Biochem 289,281-288. 26. Chen W., Martinez G., and Mulchadani A.2000 Anal.Biochem 280 160-172. 27. Lewin S.R., Vesanen M., Kostrikis L., Hurley A., Duran M., Zhang L., Ho D.D., and Markowitz M. 1999 J.Virol. 73, 6099-6103. 28. Pierce K.E., Rice J.E., Sanchez J.A., Brenner C., and Wangh L.J. 2000 Mol. Hum. Reprod. 6,1155-1164. 29. Vet J.A.M., Majithia A.R., Marras S.A.E., Tyagi S., Dube S., Poiesz B J., and Kramer F.r.,1999 Proc. Natl. Acad. Sci. USA 96,6394-6399. 30. Whitcombe D., Theaker J., Guy S.P., Brown T., and Little S 1999 Nature Biotechnol. 17 804-807. 31. Thelwell N., Millington S., Sollinas A., Booth J., and Brown T. 2000 Nucl Acids Res. 28,3752-3761. 32. Bernard P.S, and Wittwer C.T. 2000 Clin chem. 46 147-148. 33. Bellin T., Pulz M., Matussek A., Hemphen H.G., and Gunzer F.2001 J. Clin. Microb. 39 370-374. 34. Schalasta G., Eggers M., Schmid M., and Enders G. 2000 J. Clin. Virol. 19 175-185. 35. Simpson D.A.C., Feeney S., Boyle C., and Stitt A.W. 2000 Mol. Vis. 6, 178-183. 36. Ririe K.M., Rasmussen R.P., and Wittwer C.T., 1997 Anal. Biochem 245,154-160. 37. Kellogg D.E., Rybalkin I., Chen S., Mukhamedova N., Vlasik T., Siebert P.D., and Chenchick A. 1994 Biotechniques 16, 1134-1137. 38. de Baar M.P., van Dooren M.W., de Rooij D., Bakker M., van Gemen B., Goudsmit J., and de Ronde. 2001 J. Clin Microbiol. 39, 1378-1384. 39. Bustin S.A., 2000 J. Mol. Endocrinol. 25,169-193. 40. Martorana A.M., Zheng G., Springall F., Iland H.I., O’Grady and Lyons J.G. Absolute quantitation of Specific mRNA in cell and tissue samples by comparative PCR. 1999 Biotechniques 27,136-144. 41. Raeymaekers L. Basic principle of quantitative PCR. 2000 Mol. Biotech. 15, 115-122. 42. Zimmermann K., and Mannhalter J.W. Technical aspect of quantitative competitive PCR. 1996 BioTechniques 21,268-279. 43. Sarkar G., and M.E. Bolander 1994 The “looped oligo” method for generating reference molecules for quantitative PCR. Biotechniques 17,846-866. 44. Kohsaka H., A. Tanigushi, D.D. Richman and D.A. Carson . 1993 Microtiter format gene quantification by xovalent capture of competitive PCR products: application to HIV-1 detection. Nucleic Acids Res. 21,3469-3472. 45. Schanke J.T., L.M. Quam and B.G. Van Ness 1994 Flip PCR for DNA sequence motif inversion. Biotechniques 16,414-416. 46. Sieg;omg A., M.Lehmann, C. Platzer, F. Emmrich and H.D.Volk. 1994 A novel multispecific competitor fragment for quantitative PCR analysis of cytokine gene expression in rat. J. Immunol. Methods 177, 23-28. 47. Willard M.F., Stephen J.W., and Kent E.V. Quantitative PT-PCR: pitfalls and potential. 1999 Biotechniques 26,112-125.
|