高密度脂蛋白与胆固醇逆转运 叶慧俊 综述 赵水平 审校 (中南大学湘雅医学院附二院心内科 410011)
摘要:高密度脂蛋白的保护作用与胆固醇逆转运有关,本文就胆固醇逆转运过程、参与胆固醇逆转运的蛋白以及与胆固醇逆转运相关的疾病进行概述,提出尚待明确的问题。
主题词: 高密度脂蛋白;胆固醇逆转运;冠心病;受体
自1973年,Brown 和 Goldstein 发现低密度脂蛋白受体以来,对低密度脂蛋白(LDL)代谢,作用机制,供给细胞胆固醇等的认识已经比较详尽。在治疗上,通过他汀类等药物降低LDL胆固醇(LDL-C)的合成,增加LDL受体的活性,从而降低LDL-C水平,有效地减少了冠心病的发生率。相比LDL而言,对于高密度脂蛋白(HDL)的认识非常有限。尽管早在1968年,Glomset等就提出了胆固醇逆转运的概念,认为HDL的保护作用与胆固醇逆转运有关,但由于相关受体未被确认,此理论长期处于假设之中。随着相应受体的确认,胆固醇逆转运理论逐渐被接受,而人们对HDL的认识也逐渐深入。
一、胆固醇逆转运过程 HDL将胆固醇从周围组织(包括动脉粥样斑块)转运到肝脏进行再循环或以胆酸的形式排泄,这一过程称作胆固醇逆转运。 1.胆固醇的外流 周围细胞中的胆固醇在浆膜双层上的分布是不对称的,有核细胞中的胆固醇大多分布在浆膜的内层上。这种分布受浆膜上的脂肪酸的组成及首基变化的影响,细胞间的脂质转运蛋白(LTP)也可影响胆固醇在浆膜层上的分布以及外流的速度[1]。在多种细胞的浆膜上均发现有高密度脂蛋白结合蛋白,它们的分子量为80~180kD[2]。 周围组织的胆固醇是以游离胆固醇的形式进行转移的,胆固醇的外流可通过弥散或受体介导的方式进行。尽管胆固醇的水溶性较差,弥散也构成了胆固醇的外流一部分,这是一个被动过程。在受体介导的主动的胆固醇外流过程中[3],HDL与细胞上的高密度脂蛋白结合蛋白结合,激活蛋白C激酶介导的信号系统从而诱导胆固醇的外流,胆固醇从内质网转移到细胞表面。HDL的载脂蛋白如apoA-Ⅰ和apoE决定胆固醇的结合部位,介导胆固醇的外流,胆固醇转移至前β1HDL引起结构的改变,加速了胆固醇在细胞膜上的解吸附。进入前β1HDL的胆固醇就停留在前β1HDL之中,这可能与鞘磷脂降低了胆固醇的解离速度有关。ATP结合盒转运子1(ABC1)通过利用ATP参与将脂质从细胞膜内层移至外层,从细胞膜移至HDL的apoA-Ⅰ的过程,从而对胆固醇的外流进行调节[4]。
2.胆固醇的酯化 HDL接受游离胆固醇。卵磷酯胆固醇酰基转移酶(LCAT)能催化游离胆固醇的酯化。酯化胆固醇比游离的胆固醇更疏水,被紧紧地包裹在HDL的中心部位,以便HDL可以摄取更多的胆固醇。酯化的胆固醇还可被再次转运出去。[5] HDL中的胆固醇酯化是一个复杂的过程。首先,进入前β1HDL的胆固醇,很快就出现在圆盘状HDL中。圆盘状HDL是LCAT最有效的作用底物。这与apoA-Ⅰ的中心区域(残基99-186)有关。成熟的人类apoA-Ⅰ中心区域包括143-165的保守重复序列及两端的较不保守序列。完全去除143-165的保守重复序列的apoA-Ⅰ不能激活LCAT。apoA-Ⅰ的残基143-165是一典型的A1型的螺旋结构,是疏水的。它含有一组正电荷,在不同的种属中具有高度的保守性。与apoA-Ⅰ一样,LCAT也具有一疏水的A1型两性螺旋序列,许多负电荷位于疏水面和亲水面的交界处。如果apoA-Ⅰ的143-165残基与LCAT的残基151-174相对,它们的正负电荷相互配对,互相紧密结合,LCAT借机将2-酰基团转运至HDL-C,形成胆固醇酯。[6,7]
3.胆固醇的清除 HDL中胆固醇酯的清除有三条途径:1)间接途径:通过胆固醇酯转运蛋白(CETP)将HDL中胆固醇酯转运到富含甘油三酯的脂蛋白(乳糜微粒,极低密度脂蛋白)中;富含甘油三酯的脂蛋白连同胆固醇酯一起通过肝脏上的受体介导进入肝脏,从循环中清除[8]。2)非选择性的摄取途径:既可摄取完整的HDL颗粒,亦可摄取HDL相关的蛋白及其降解产物,如apoA-Ⅰ,这条途径可能参与了大而富含apoE的HDL的形成[9]。3)选择性的摄取途径:只摄取HDL中胆固醇酯,而不摄取HDL的其他成份;这一途径是通过B族Ⅰ型清道夫受体介导的,选择性的胆固醇摄取是很重要的,通过选择性的摄取,可将HDL胆固醇转运到肝脏及合成类固醇激素的组织,如肾上腺皮质[10]。
二、参与胆固醇逆转运的蛋白
1. 卵磷酯胆固醇酰基转移酶(LCAT) LCAT由肝脏分泌。成熟的LCAT由416个氨基酸组成,分子量为47.1kD,共有6个半胱氨酸残基,4个糖基化位点。LCAT是丝氨酸羟化酶,以定位突变方法确定了具活性的丝氨酸残基位于ser181,与组氨酸、谷氨酸或门冬氨酸残基一同构成催化三合体。紧接ser181之前或之后的是由疏水氨基酸组成的短序列。在残基151与174之间,一23氨基酸序列与apoE的C端的两性螺旋重复序列具有高度的相似性 ,这不存在于其他丝氨酸依赖的脂酶、酯化酶中。[11] LCAT在血浆中主要通过与apoA-Ⅰ结合,从而与圆盘状HDL及球形HDL作用,将卵磷脂或磷脂酰乙醇胺的2-酰基团转运至胆固醇,形成胆固醇酯或溶血卵磷脂。在完全缺乏胆固醇的情况下,LCAT是一种磷脂酶,产生溶血卵磷脂及游离脂肪酸,LCAT也催化酰基在卵磷脂和溶血卵磷脂之间的转换,这种作用是通过卵磷脂中1和2位上的脂肪酸的重新分布来实现的。卵磷脂表面的组成(鞘磷脂的含量)较之酰基的长度对于LCAT的催化作用的影响更大。长度、饱和度不同的卵磷脂置于磷脂酰酯基质中,它们的反应速度相似。[11,12]
2. 胆固醇酯转移蛋白(CETP) CETP在肝脏、小肠及一些周围组织如脂肪中合成,是一74 kD的糖蛋白。它催化中性脂质尤其甘油三酯和胆固醇酯在各主要脂蛋白间的交换,将胆固醇酯从HDL转移至富含甘油三酯的脂蛋白中[8]。在正常血浆中,胆固醇酯的转运主要取决于合适的富含甘油三酯脂质颗粒的多少,而不是CETP的浓度高低[13]。 CETP与血浆胆固醇浓度的高低具有相关性。各种原因包括因进食高脂肪、高胆固醇饮食,或因LDL受体和apoE缺陷而产生的内源性高胆固醇血症,均可诱导CETP的表达,肝脏中CETP mRNA升高。这可能由于CETP基因在肝脏和周围组织中的转录增加所致[14]。通过对脂肪细胞的启动子-受体基因的分析以及CETP启动子基因突变的转基因小鼠的研究发现了介导这一反应的启动子。它是核激素受体直接重复4元素(nuclear hormone receptor direct repeat 4 element ),被转录因子肝脏X受体(LXR)-α和LXR-β激活[15]。
3. B族Ⅰ型清道夫受体(SR-BI) SR-BI具有能结合修饰的LDL和顺丁烯二酰基牛血清白蛋白的特性,它归属于清道夫受体家族。SR-BI除在肝脏外,在肾上腺,卵巢,睾丸中亦有较高的浓度。它具有广泛的配体,可与天然或修饰的脂蛋白、阴离子磷脂、凋亡细胞等结合。SR-BI还能作为HDL的受体,介导胆固醇酯的选择性摄取,与HDL具有高度的结合力。许多体内研究均已确定SR-BI作为HDL受体不需将HDL颗粒内在化,即可将HDL胆固醇选择性的摄取。体外研究亦与此相符,增加SR-BI的作用底物可显著的降低HDL胆固醇的摄取。SR-BI基因已被克隆,在SR-BI的基因中有一类固醇调节因子(sterol regulatory element)。胆固醇代谢与SR-BI的表达具有相关性。产类固醇因子1(steroidogenic factor-1)这一转录因子激活许多产类固醇复合物的成分,与SR-BI启动子结合,促进了SR-BI在肾上腺皮质细胞的转录。在产类固醇激素的组织中,促肾上腺皮质激素、雌激素、绒毛膜促性腺激素在增加HDL结合、类固醇激素产生的同时,也促进了SR-BI的表达。[10,16,17]
4.ATP结合盒转运子1(ABC1) ABC1基因位于常染色体9q31上D9S271与D9S1866间的区域。ABC1属于ABC基因家族的一员。ABC所编码的蛋白参与生物膜间物质的转运。每一ABC转运子对于转运的物质具有相对特异性,这是由跨膜功能区决定的,而转运所需的能量则是由位于核苷结合折叠区(NBF)的ATP降解提供的。ABC1具有ABC所有的典型特征,它的两端对称,每一端均由六个跨膜功能区及一个核苷结合折叠区(NBF)构成;这两端由一带电荷的长序列及一高度疏水片段所连接。ABC1受多种机制的调节,cAMP治疗、细胞内胆固醇的增多、蛋白激酶以及LRXs均可使ABC1的表达增加,γ干扰素(IFN-γ)则减少ABC1的表达。ABC1编码的蛋白称作胆固醇外流调节蛋白(CERP),它参与胆固醇的外流,促使胆固醇转移给apoA-Ⅰ和HDL。[15,18]
三 与胆固醇逆转运相关的疾病
胆固醇逆转运是一动态的平衡,在胆固醇外流、酯化、转运、清除任一环节的变化均可影响胆固醇逆转运的速率和效率。
1. 鱼眼病 鱼眼病(fish-eye disease)是由于LCAT的基因突变影响了与HDL反应的能力。在体外, 这种缺陷的卵磷酯胆固醇酰基转移酶几乎不能与LDL提供的游离胆固醇进行反应。这可能是由于在鱼眼病的血浆中,与LCAT反应的底物是apoA-Ⅰ-LDL复合物,而此复合物在正常血浆中的含量极低。这种先天性的LCAT缺陷伴有胆固醇在周围组织尤其是血管壁、肾、脾的广泛沉积。然而该病患者的冠心病的危险性并不比普通人群增高,这可能与鱼眼病患者的LDL低下有关。[19]
2. 原发性高α脂蛋白血症 原发性高α脂蛋白血症是一种遗传代谢性疾病,是由于CETP基因缺陷所致。约有5%~7%的日本人群有CETP内显子14基因剪接缺陷,外显子15[D442G] 错义突变。CETP基因缺陷纯合子患者的HDL明显增高,3~5倍于普通水平;杂合子的HDL亦有中度且显著的升高,升高约10%~30%。CETP缺陷患者患冠心病的比值比约为1.7。患冠心病的危险性也受到HDL的影响。若HDL-C水平高于60mg/dL,即使存在CETP的缺陷,冠心病发病率也较低。目前认为,HDL的保护作用不仅在于它参与胆固醇逆转运,还具有抗氧化,抗炎等作用。[20]
3. Tangier病 Tangier病最早发现于40年前。居住在摩洛哥北部的丹吉尔(Tangier)岛的两兄弟被诊断患有此病。它是一种常染色体的隐性遗传病,是由于ABC1基因突变所致。纯合子患者常伴有血浆中HDL-C缺乏,肝脾肿大,周围神经病变,早发冠心病。杂合子患者血浆中HDL-C约为普通人群的1/2。HDL介导的胆固醇流出、细胞内脂质转运异常,HDL及其前体的分解代谢增快,胆固醇自巨噬细胞流出异常导致泡沫细胞的形成,脂质在网状内皮系统沉积,因而该病患者的冠心病危险性增加。[18]
四 尚待明确的问题
1. HDL与CHD的关系 大量的临床流行病学研究均发现HDL-C与CHD呈负相关。亦有人认为,HDL-C水平与冠心病的负相关并不足以说明,HDL是一抗粥样硬化的脂蛋白,因为HDL的降低往往与高甘油三酯,低脂蛋白酯酶,胰岛素抵抗,小而密的LDL并存。而这些因素本身就与动脉粥样硬化的形成密切相关。在SR-BI表达障碍的动物中,HDL水平升高[17],但却加速了动脉硬化的形成; 人类CETP缺陷往往伴随着HDL的升高,而冠脉疾病的危险性也增加[20]。这可能与HDL的类型及伴随的其他脂蛋白成分的异常有关,也可能是临床流行病学研究与动物试验的结果存在差别。
2. 体内与体外研究的问题 胆固醇逆转运机制的研究大多来源于细胞培养,以提纯的脂蛋白、酶、转运蛋白作为研究工具。毕竟体内、体外的条件不同,在体内微环境所受调节的影响甚大。这些研究的证据是否可靠,动物试验与人体研究,先天基因缺陷与人工导致的基因异常的研究的结果一致性如何,除已发现的基因缺陷外,是否还存在尚未发现的异常基因,均需进一步研究。
3. SR-BI SR-BI促进高密度脂蛋白胆固醇的清除,降低高密度脂蛋白水平,减少了HDL的胆固醇逆转运作用以及抗氧化、抗炎等作用,同时SR-BI在肝脏的表达增加也促进了胆固醇逆转运。SR-BI是有利的还是有害的,是它本身的作用还是参与脂质代谢的结果,尚不明确;另外,由于小鼠等主要的胆固醇载体是HDL,而在人类则为LDL,那么能否通过药物改变SR-BI的表达,参与HDL的代谢,从而达到降低胆固醇水平、冠心病危险性的目的,都有待进一步阐明。
|